Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1377020220190061223
Tissue Engineering and Regenerative Medicine
2022 Volume.19 No. 6 p.1223 ~ p.1235
Expression of RUNX2/LAPTM5 in the Induction of MC3T3-e1 Mineralization and Its Possible Relationship with Autophagy
Xing Lei

Li Yanqin
Li Wenhao
Liu Rong
Geng Yuanming
Ma Weiqun
Qiao Yu
Li Jianwen
Lv Yingtao
Fang Ying
Xu Pingping
Abstract
Background: The study aims to correlate osteogenesis with autophagy during the mineralization induction of MC3T3-e1 through exploring the expression of runt-related transcription factor 2 (RUNX2)/lysosomal-associated transmembrane protein 5 (LAMPT5).

Methods: The induction of mineralization in MC3T3-e1 was followed by detecting the expressions of osteogenesis-related indexes such as RUNX2, alkaline phosphatase (ALP), osteocalcin (OCN), and LAPTM5 using RT-qPCR and Western blot from 0 to 14 days. Transmission electron microscope was utilised in visualizing the alterations of autophagosomes, which was followed by immunofluorescence detecting the subcellular localization of autophagy-related index sequestosome 1 (P62) and microtubule-associated protein 1 light 3 (LC3) protein and scrutinising the expression of P62 mRNA and P62 and LC3 proteins.

Results: Induction of MC3T3-e1 mineralization demonstrated an increased expression of osteogenesis-related indicators such as RUNX2, ALP, OCN, and LAPTM5 (p < 0.05), as evident from the results of RT-qPCR and Western blot. Meanwhile, the expression of autophagosomes increased one day after mineralization induction and then experienced a gradual decline, and enhanced expression of LC3 protein was noted on days 1-2 of mineralization induction but was then followed by a corresponding reduce. In contrast, a continuous increase was reported in the expression of P62 mRNA and protein, respectively (p < 0.05). Up- and down-regulating RUNX2/LAPTM5 expression alone confirmed the aforementioned results.

Conclusion: It was therefore proposed that RUNX2 may be responsible for an early increase and then a gradual decrease in LAPTM5-mediated autophagy through the regulation of its high expression. Meanwhile, increased LAPTM5 expression in osteogenic mineralization presumed that RUNX2/LAPTM5 promoted autophagy and osteogenic expression, which may play a bridging role in the regulation of autophagy and osteogenesis.
KEYWORD
Autophagy, Correlativity, LAPTM5, Osteogenesis, RUNX2.
FullTexts / Linksout information
Listed journal information
SCI(E) ÇмúÁøÈïÀç´Ü(KCI) KoreaMed ´ëÇÑÀÇÇÐȸ ȸ¿ø